Abteilung II Eilers » Mitarbeiter » Hartmut Schmidt


PD Dr. rer. nat. Hartmut Schmidt (Gruppenleiter)

Carl-Ludwig-Institute for Physiology
University Leipzig, Liebigstr. 27, 04103 Leipzig, Germany
Room 210

phone: +49 (0) 341 97 15531
email: hartmut.schmidt@medizin.uni-leipzig.de

Curriculum Vitae

Ausbildung & Wissenschaftlicher Werdegang

1986 Abitur, Alte Landesschule.
1986-1989 Studium zum Diplom-Finanzwirt (FH).
Kassel, Rothenburg
1989 - 1991 Studium der Rechtswissenschaften.
1991 - 1996 Studium Diplom-Biologie, Johannes Gutenberg-Universität.
1996 - 2000 Promotion, Johannes Gutenberg-Universität Mainz,
Prof. G. M. Technau
Thema: „Experimentelle Untersuchungen zur embryonalen Entwicklung identifizierter Vorläuferzellen des zentralen Nervensystems von Drosophila melanogaster: Zellstammbäume und Elektrogenese“
Abschluss: summa cum laude.
2000 - 2003 Wissenschaftlicher Angestellter, Max-Planck-Institut
für Hirnforschung Direktor: Prof. W. Singer.
2004 - 2005 Wissenschaftlicher Angestellter, Carl-Ludwig-Institut
für Physiologie, Direktor: Prof. J. Eilers.
Seit 2006/2009 Laborleiter/Gruppenleiter, Carl-Ludwig-Institut für Physiologie Leipzig.
2010 Habilitation im Fach Physiologie.
Thema: „Funktionelle Charakterisierung Kalzium bindender Proteine in situ mittels hochauflösender optophysiologischer Methoden“


2000 Preis der Johannes Gutenberg Universität Mainz, 2000.


2005 Deutsches Patent Nr. 103 34 825 „Komponentensystem zur Zubereitung von Kulturmedien“ / Johannes Gutenberg-Universität Mainz, 2005.


2005-2009 DFG-Graduiertenkolleg 1097 Interneuro, Universität Leipzig, Teilprojekt P11: „Regulation der IP3 - Signalkaskade durch Calbindin D28k“.
Seit 2009 DFG-Graduiertenkolleg 1097 Interneuro, Universität Leipzig, Teilprojekt P11: „Regulation der IP3 - Signalkaskade durch Calbindin D28k".
  DFG-Normalverfahren EI342/4-1: „Immobilisierung endogener Ca2+ - Puffer als Determinante der Paarpulsplastizität an einer kortikalen Synapse“.
Ab 2014 DFG-Normalverfahren SCHM1838/1-1: “Developmental changes in Ca2+-influx – release coupling at the active zone of excitatory cortical synapses”


Synaptic transmission and plasticity

Ca2+ triggered exocytosis of transmitter filled synaptic vesicles and Ca2+ induced synaptic plasticity are fundamental for neuronal communication. In order to derive a deeper understanding of the underlying synaptic signaling cascades I employ a combination of two-photon imaging techniques (synaptic Ca2+ imaging and FRAP (fluorescence recovery after photobleaching), electroporation targeted paired patch-clamp recordings, and numerical computer simulations.

Figure 1. Paired patch-clamp recordings in acute brain slices. Left: (A, B) Recordings from connected cerebellar Purkinje neurons (modified from Bornschein et al., 2013). Right: (A, B) Recordings from Pyramidal neurons in somatosensory cortex.


Figure 2. Presynaptic Ca2+ imaging in acute brain slices. Left: Ca2+ signals in a presynaptic terminal of a Purkinje neuron axon collateral. Right: Ca2+ signals in Parallelfiber boutons of cerebellar granule cells (modified from Schmidt et al., 2013).

Diffusion and binding

Ca2+ binds to specialized Ca2+ binding proteins (CaBP), termed "sensors", which trigger the subsequent downstream events. Well known Ca2+ sensors are Troponin-C in skeletal muscles or Calmodulin in all eukaryotic cells. Their intracellular mobility and binding reactions can be unraveled by FRAP.

Fig. 3. FRAP recordings.
Dendrite and spines of a Purkinje neuron filled with the dye labelled CaBP Calbindin (CB, left). To the right a FRAP recording from the spine marked by the white crosshair is shown. The offset indicates binding of CB in the spine. The time course of the recovery (τ), allowed quantifying the diffusion coefficient of CB (modified from Schmidt at al, 2005).




  • Kusch, V., Bornschein, G., Loreth, D., Bank, J., Jordan, J., Baur, D., Watanabe, M., Kulik, A., Heckmann, M., Eilers, J., & Schmidt, H.
    Munc13-3 is required for the developmental localization of Ca2+ channels to active zones and the nanopositioning of Cav2.1 near release sensors.
    Cell Reports 22, 1965-1973


  • Doussau F., Schmidt H., Dorgans K., Valera A. M., Poulain B. and Isope P.
    Frequency-dependent mobilization of heterogeneous pools of synaptic vesicles shapes presynaptic plasticity
    eLife 6:e28935 doi: 10.7554/eLife.28935


  • Mondragão M. A., Schmidt H., Kleinhans C., Langer J., Kafitz K. W. and Rose C. R.
    Extrusion versus diffusion: mechanisms for recovery from sodium loads in mouse CA1 pyramidal neurons.
    J Physiol. 2016 doi: 10.1113/JP272431
  • Isope P., Wilms C. D. and Schmidt H.
    Determinants of synaptic information transfer: From Ca2+ binding proteins to Ca2+ signaling domains.
    Front Cell Neurosci, 2016, DOI: 10.3389/fncel.2016.00069


  • Baur D., Bornschein G., Althof D., Watanabe M., Kulik A., Eilers J. and Schmidt H., 2015.
    Developmental tightening of cerebellar cortical synaptic influx-release coupling.
    J. Neurosci.35(5): 1858-1871.
  • Brachtendorf S., Eilers J. and Schmidt H., 2015.
    A use-dependent increase in release sites drives facilitation at calretinin-deficient cerebellar parallel-fiber synapses.
    Front Cell Neurosci 9: DOI 10.3389/fncel.2015.00027.


  • Ishiyama S., Schmidt H., Cooper B.H., Brose N. and Eilers J., 2014.
    Munc13-3 superprimes synaptic vesicles at granule cell-to-basket cell synapses in the mouse cerebellum.
    J Neurosci, 34(44): 14687-14696.
  • Mortensen L.S., Schmidt H., Farsi Z., Barrantes-Freer A., Rubio M.E., Ufartes R., Eilers J., Sakaba T., Stühmer W. and Pardo L.A., 2014.
    KV10.1 potassium channels modulate presynaptic short-term plasticity at the parallel fiber - Purkinje cell synapse.
    J Physiol (Lond), 4. DOI:10.1113/jphysiol.2014.281600.
  • Arendt O., Schwaller B., Brown E.B., Eilers J., Schmidt H
    Restricted diffusion of calretinin in cerebellar granule cell dendrites implies Ca2+-dependent interactions via its EF-hand 5 domain.
    J Physiol. 2013 Jun 3. [Epub ahead of print] IF 4.88.
  • Bornschein G., Arendt O., Hallermann S., Brachtendorf S., Eilers J. AND Schmidt H
    Paired-pulse facilitation at recurrent Purkinje neuron synapses is independent of calbindin and parvalbumin during high-frequency activation.
    J Physiol. 2013 Jul 1;591(Pt 13):3355-3370. Epub 2013 May 13.IF 4.88
  • Schmidt H, Brachtendorf S*, Arendt O, Hallermann S, Ishiyama S, Bornschein G, Gall D, Schiffmann SN, Heckmann M, Eilers J (2013)
    Nanodomain Coupling at an Excitatory Cortical Synapse.
    Curr Biol. 3, 244-249. IF 10.99


  • Schmidt H, Arendt O. and Eilers J. 2011.
    Diffusion and extrusion shape standing calcium gradients during ongoing parallel fiber activity in dendrites of Purkinje neurons.
    Cerebellum. 11(3):694-705. IF3.29


  • Hallermann S., Fetjova A., Schmidt H, Weyhersmüller A., Silver R.A., Gundelfinger E.D. and Eilers J. 2010.
    Bassoon speeds vesicle reloading at a central excitatory synapse.
    Neuron 68(4) 710-23. IF 14.67.
  • Guzman S.J., Schmidt H, Franke H., Krügel U., Eilers J. and Gerevich Z.., 2010.
    P2Y1 receptors inhibit long-term depression in the prefrontal cortex.
    Neuropharm. 59(6): 406-15.
  • Schaarschmidt G., Wegener, F., Schwarz, S.C., Schmidt H and Schwarz, J., 2009b.
    Characterization of voltage gated potassium channels in human neural progenitor cells.
    PLOS One. Jul 8;4(7):e6168.
  • Schaarschmidt G., Schewtschik S., Eilers J., Schwarz, J. and Schmidt H, 2009a.
    A new culturing strategy optimizes functional neuronal development of midbrain derived precursors.
    J Neurochem 109: 238-247. IF 4.451. Zitierungen 4.
  • Schmidt H, and Eilers J., 2009.
    Regulation of Ca2+ buffer mediated spino-dendritic cross-talk by the spine neck geometry.
    J Comput Neurosci 27(2):229-43.


  • Schmidt H, Arendt O., Brown E. B., Schwaller B., and Eilers J., 2007a.
    Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurons.
    J Neurochem 100: 727-735.
  • Schmidt H, Kuhnert S., Wilms C., Strotmann R. and Eilers J., 2007b.
    Spino-dendritic cross-talk mediated by mobile endogenous Ca2+ binding proteins.
    J Physiol (Lond.) 2: 619-629.


  • Wilms C., Schmidt H and Eilers J., 2006.
    Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis.
    Cell Calcium 40: 73-79.
  • Schmidt H, Schwaller B. and Eilers J., 2005.
    Calbindin D28k targets myo-inositol monophosphatase in spines and dendrites of cerebellar Purkinje neurons.
    PNAS 102: 5850-5855.


  • Küppers-Munther B., Letzkus J.J., Lüer k., Technau G. M., Schmidt H and Prokop A., 2004.
    A new culturing strategy optimises Drosophila primary cell cultures for structural and functional analyses of synapses.
    DEV Biol 269(2):459-78.
    Diese Arbeit liegt der Erteilung des Patents über Zellkulturmedien zugrunde.
  • Schmidt H, Stiefel K. M., Racay P., Schwaller B. and Eilers J., 2003b.
    Mutational analysis of dendritic Ca2+ kinetics in cerebellar Purkinje cells: Role of parvalbumin and calbindin D28k.
    J Physiol (Lond.) 551: 13-32.
  • Schmidt H, Brown E. B., Schwaller B. and Eilers J., 2003a.
    Diffusional mobility of parvalbumin in spiny dendrites of cerebellar Purkinje neurons quantified by fluorescence recovery after photobleaching.
    Biophys J 84: 2599-2608.

Vor 2003

  • Schmidt H., Lüer K., Hevers W. and Technau G. M., 2000.
    Ionic currents of Drosophila embryonic neurons derived from selectively cultured CNS midline precursors.
    J Neurobiol 44: 392-413.
  • Schmidt H., Rickert C., Bossing T., Vef O., Urban J. and Technau G. M., 1997.
    The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neruoectoderm.
    Dev Biol 189: 186-204.

Übersichtsarbeiten mit unabhängiger Begutachtung (Peer Review)

  • Schmidt H 2012.
    Three functional facets of calbidin-28k.
    FRONT. MOL. NEUROSCI. 5: DOI10.3389/fnmol.2012.00025.


  • Schmidt H., 2013.
    27. Calcium buffering: Models of Ca2+-dynamics and steady-state approximations.
    27. In: Encyclopedia of Computational Neuroscience. Eds: D. Jaeger, R. Jung. Springer Science+Business New York. DOI 10.1007/978-1-4614-7320-6_177-1.
  • Schmidt H and Eilers J., 2010.
    A practical guide: dye loading with patch pipettes.
    In: Imaging in neuroscience and development: a laboratory manual, (R. Yuste and A. Konnerth eds.), pp. Cold Spring Harbor Laboratory Press, New York.
  • Schmidt H and Eilers J., 2007c.
    Combined fluorometric and electrophysiological recordings.
    In: Patch-Clamp Analysis: Advanced techniques. Eds: Boulton A. A., Baker G. B., Waltz W., Humana Press Inc, Totowa, New Jersey.
  • Schmidt H and Eilers J., 2002.
    Combined fluorometric and electrophysiological recordings.
    In: Advanced techniques for patch-clamp analysis. Eds: Boulton A. A., Baker G. B., Waltz W., Humana Press Inc, Totowa, New Jersey.

Editoren Tätigkeit

  • Schmidt H., Isope, P., Wilms C (Editoren).
    Research Topic: Determinants of synaptic information transfer: From Ca2+ binding proteins to Ca2+ signalling domains.
    Frontiers in Cellular Neuroscience (IF 4.2).

Andere Veröffentlichungen

Other activities


The practice of Yoga is an integral part of my life since around 1984.


Rock climbing

In the vertical world you and your small world problems become really insignificant.



No cars, no crowds, no traffic; just you, your family, a tent, a boat, and a way that is preset by a river!

Wildwasser Kinder


A long standing interest in Philosophy ultimately brought me to Neuroscience. My major interest is in the so called mind-body problem and related topics, including free will, but also in philosophy of science. I am interested in aspects of eastern and western philosophy and read classical work from many philosophers and presumed wise man, including Samkhya philosophy, the Upanishads, Plato, Descartes, Kant, Berkeley, Schopenhauer, Popper and many others.